商品情報にスキップ
1 2

PREDICTION OF DAILY SOLAR RADIATION WITH ANN MODEL USING INFLUENTIAL INPUTS SELECTED BY FACTOR ANALYSIS

PREDICTION OF DAILY SOLAR RADIATION WITH ANN MODEL USING INFLUENTIAL INPUTS SELECTED BY FACTOR ANALYSIS

通常価格 ¥660 JPY
通常価格 セール価格 ¥660 JPY
セール 売り切れ
税込

カテゴリ: 研究会(論文単位)

論文No: PSE22019

グループ名: 【B】電力・エネルギー部門 電力系統技術研究会

発行日: 2022/01/18

タイトル(英語): PREDICTION OF DAILY SOLAR RADIATION WITH ANN MODEL USING INFLUENTIAL INPUTS SELECTED BY FACTOR ANALYSIS

著者名: MPAMBA SHAMBUYI Alain(Gifu University),Takano Hirotaka(Gifu University),Asano Hiroshi(Gifu University(*) / Central Research Institute of Electric Power Industry )

著者名(英語): Alain MPAMBA SHAMBUYI(Gifu University),Hirotaka Takano(Gifu University),Hiroshi Asano(Gifu University(*) / Central Research Institute of Electric Power Industry )

キーワード: Artificial Neural Networks | Photovoltaic Generation Systems|Solar Radiation|Meteorological Variables|Factor Analysis|Artificial Neural Networks | Photovoltaic Generation Systems|Solar Radiation|Meteorological Variables|Factor Analysis

要約(日本語): For both standalone and grid-connected photovoltaic generation systems (PVs), it is necessary to collect solar radiation information beforehand as it is used for different purposes. In this article, an Artificial Neural Network (ANN)-based prediction mode

要約(英語): For both standalone and grid-connected photovoltaic generation systems (PVs), it is necessary to collect solar radiation information beforehand as it is used for different purposes. In this article, an Artificial Neural Network (ANN)-based prediction model is proposed. In this model, meteorological variables are used as inputs. The most influential inputs are selected through the Factor Analysis (FA) method. From nine inputs available in our dataset for numerical simulations, only four inputs are selected as a result of application of FA to the dataset. The number of neurons in the ANN’s hidden layer is calculated using an experimental formula. Numerical simulations show us the lower neurons’ number to use for the model. Consequently, the proposed model has a simple structure as compared to many existing models because fewer neurons and only influential inputs are used. A simple model is easy to implement and requires lower computer capacity, which is economically beneficial

本誌: 2022年1月21日電力系統技術研究会

本誌掲載ページ: 95-100 p

原稿種別: 英語

PDFファイルサイズ: 1,137 Kバイト

販売タイプ
書籍サイズ
ページ数
詳細を表示する