商品情報にスキップ
1 1

A Novel Load Frequency Control Method of Microgrids based on Model Predictive Control using Particle Filter

A Novel Load Frequency Control Method of Microgrids based on Model Predictive Control using Particle Filter

通常価格 ¥440 JPY
通常価格 セール価格 ¥440 JPY
セール 売り切れ
税込

カテゴリ: 部門大会

論文No: 122

グループ名: 【B】令和6年電気学会電力・エネルギー部門大会

発行日: 2024/08/23

タイトル(英語): A Novel Load Frequency Control Method of Microgrids based on Model Predictive Control using Particle Filter

著者名: Helin Yang(Hiroshima University),Weichao Wang(Hiroshima University),Yutaka Sasaki(Hiroshima University),Yoshifumi Zoka(Hiroshima University),Naoto Yorino(Hiroshima University)

著者名(英語): Helin Yang (Hiroshima University), Weichao Wang (Hiroshima University), Yutaka Sasaki (Hiroshima University), Yoshifumi Zoka (Hiroshima University), Naoto Yorino (Hiroshima University)

キーワード: Load Frequency Control|Microgrid|Model Predictive Control|Renewable Energy|Optimization|Particle Filter|Load Frequency Control|Microgrid|Model Predictive Control|Renewable Energy|Optimization|Particle Filter

要約(英語): This paper is focusing on the load frequency control strategy (LFC) based on model predictive control (MPC) strategy, aiming at enhancing the frequency stability of the MG. Unlike traditional Proportional-Integral (PI) controllers whose parameters must be tuned when the characteristics of the system are changing. MPC performs a faster response and stability against RES and load changes. It shows a rolling optimization procedure to obtain optimal control parameters in each control time domain. In this paper, a particle filter (PF) is used as the state estimator finding the optimal parameters for the MG system, which shows higher accuracy than other state estimators widely used in nonlinear systems such as Unscented Kalman Filter (UKF) by making a comparison of the error between true and estimate value of the frequency deviation caused by PF and UKF respectively in this paper.

PDFファイルサイズ: 858 Kバイト

販売タイプ
書籍サイズ
ページ数
詳細を表示する