商品情報にスキップ
1 1

A Deep Convolutional Neural Network for Super Resolution via Soft-Attention Mechanism

A Deep Convolutional Neural Network for Super Resolution via Soft-Attention Mechanism

通常価格 ¥440 JPY
通常価格 セール価格 ¥440 JPY
セール 売り切れ
税込

カテゴリ: 部門大会

論文No: SS1-1

グループ名: 【C】2021年電気学会電子・情報・システム部門大会

発行日: 2021/09/08

タイトル(英語): A Deep Convolutional Neural Network for Super Resolution via Soft-Attention Mechanism

著者名: 張 伯聞(甲南大学),田中 雅博(甲南大学)

著者名(英語): Bowen Zhang (Konan University),Masahiro Tanaka (Konan University)

キーワード: Deep Learning|Attention Mechanism|Convolutional Neural Network|Super Resolution

要約(日本語): Deep Convolutional Neural Networks(DCNNs) have achieved a state-of-the-art performance in computer vision tasks. But convolution operation can only process a local neighborhood at one time. This work constructs a DCNNs structure to adopt a soft-attention module for capturing the dependencies of spatial position information in each image, which is applied to a Super Resolution task. In addition, we use a few convolution filters with different kernel sizes in parallel for extracting the multi-scale features. In the experimental study, we compare the performance of our model with the traditional Bicubic interpolation method and the deep learning method SRCNN(3 layers DCNNs), where the Peak Signal-to-Noise Ratio index of our model is superior to the other two.

PDFファイルサイズ: 665 Kバイト

販売タイプ
書籍サイズ
ページ数
詳細を表示する