Analysis and Switching of Normalization in the Decomposition-based Constraint Handling Technique for Constrained Optimization
Analysis and Switching of Normalization in the Decomposition-based Constraint Handling Technique for Constrained Optimization
カテゴリ: 部門大会
論文No: SS2-7
グループ名: 【C】2023年電気学会電子・情報・システム部門大会
発行日: 2023/08/23
タイトル(英語): Analysis and Switching of Normalization in the Decomposition-based Constraint Handling Technique for Constrained Optimization
著者名: Yasuda Yusuke(Tokyo Metropolitan University),Kojima Hidetoki(JGC Japan),Kumagai Wataru(Yokogawa Electric),Tamura Kenichi(Tokyo Metropolitan University),Yasuda Keiichiro(Tokyo Metropolitan University)
著者名(英語): Yusuke Yasuda (Tokyo Metropolitan University),Hidetoki Kojima (JGC Japan),Wataru Kumagai (Yokogawa Electric),Kenichi Tamura (Tokyo Metropolitan University),Keiichiro Yasuda (Tokyo Metropolitan University)
キーワード: Constrained Optimization|Metaheuristics|Constraint Handling|MOEA/D|Normalization|Constrained Optimization|Metaheuristics|Constraint Handling|MOEA/D|Normalization
要約(日本語): Our recent work extended Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) to handle constrained single-objective optimization and proposed MOEA/D with adaptive weight adjustment. This paper indicates that the normalization used in our recent work leads to poor search performance and proposes a switching normalization method that updates/stops the reference points of normalization depending on the search situation. Numerical experiments show that the proposed method enhances the robustness and performance of the search.
受取状況を読み込めませんでした
