商品情報にスキップ
1 1

ELF帯環境電磁界観測信号の背景信号推定における準L1ノルムに基づく非負値行列因子分解アルゴリズムの有用性

ELF帯環境電磁界観測信号の背景信号推定における準L1ノルムに基づく非負値行列因子分解アルゴリズムの有用性

通常価格 ¥770 JPY
通常価格 セール価格 ¥770 JPY
セール 売り切れ
税込

カテゴリ: 論文誌(論文単位)

グループ名: 【A】基礎・材料・共通部門

発行日: 2016/05/01

タイトル(英語): Usefulness of Quasi-L1 Norm-Based Nonnegative Matrix Factorization Algorithm to Estimate Background Signal using Environmental Electromagnetic Field Measurements at ELF Band

著者名: 毛利 元昭(愛知大学),内匠 逸(名古屋工業大学),安川 博(愛知県立大学),Andrzej Cichocki(理化学研究所)

著者名(英語): Motoaki Mouri (Aichi University), Ichi Takumi (Nagoya Institute of Technology), Hiroshi Yasukawa (Aichi Prefectural University), Andrzej Cichocki (RIKEN)

キーワード: 環境電磁界,信号分離,非負行列因子分解,L1ノルム  environmental electromagnetic fields,signal separation,nonnegative matrix factorization,L1 norm

要約(英語): Our research group has been measuring Extremely Low Frequency (ELF) magnetic fields across Japan. The ELF measurements are mixtures of signals associated with various natural or artificial phenomena. When focus on specific factor, the signals related to other factors distort analysis result. In order to get specific information accurately, we should estimate desired signals or eliminate undesired signals. We found that Image Space Reconstruction Algorithm (ISRA), one of the Nonnegative Matrix Factorization (NMF) algorithm, works better than independent component analysis to estimate the ELF background signal. However, ISRA sometimes failed to estimate the weight vector for the background signal. We considered that ISRA has weakness for outliers and sparse signals because ISRA is based on minimizing L2 (Frobenius) norm between input matrix and projected matrix from estimated matrices. In order to improve robustness, we developed new methods based on minimizing quasi-L1 norm (QL1-NMF). In the experiment using generated signals and ELF observed signals which had outliers, the proposed method estimate background signal more accurately than ISRA and other L1 norm based algorithms.

本誌: 電気学会論文誌A(基礎・材料・共通部門誌) Vol.136 No.5 (2016) 特集:電磁界を用いた自然災害軽減のための観測・予測・解析技術

本誌掲載ページ: 241-251 p

原稿種別: 論文/日本語

電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejfms/136/5/136_241/_article/-char/ja/

販売タイプ
書籍サイズ
ページ数
詳細を表示する