音響信号の振幅差分特徴を用いたサポートベクターマシンによる疲弊紙幣の識別
音響信号の振幅差分特徴を用いたサポートベクターマシンによる疲弊紙幣の識別
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2011/08/01
タイトル(英語): Classification of Fatigued Bills Based on a Support Vector Machine by Using the Amplitude Difference Features of Acoustic Signals
著者名: 姜 東植(琉球大学工学部),比嘉 雅樹(琉球大学工学部),宮城 隼夫(琉球大学工学部),三井 郁吾(日本金銭機械 (株)),藤田 正信(日本金銭機械 (株)),少路 進雄(日本金銭機械 (株))
著者名(英語): Dongshik Kang (University of the Ryukyus, Faculty of Engineering), Masaki Higa (University of the Ryukyus, Faculty of Engineering), Hayao Miyagi (University of the Ryukyus, Faculty of Engineering), Ikugo Mitsui (Japan Cash Machine Co., Ltd.), Masanobu Fujita (Japan Cash Machine Co., Ltd.), Nobuo Shoji (Japan Cash Machine Co., Ltd.)
キーワード: 差分特徴量,音響信号,パターン認識,紙幣識別,サポートベクターマシン amplitude difference,acoustic signals,pattern recognition,bill classification,SVM
要約(英語): The circulation bills include a large amount of fatigue bills which cause various types of problems such as the paper jam in automatic tellers due to overworked and exhausted bills. The high accuracy bill classification technique, which identifies the level of fatigue in the bills as well as distinguishes between the used and the new ones, is greatly required in order to prune these fatigued bills. The purpose of this paper is to propose a classification method of fatigue bills based on acoustic signals. The amplitude difference in the acoustic signal of bills is employed as characteristics of the bill classification. Further, a Support Vector Machine (SVM) is introduced as a classification method. We then perform the classification experiments using the acoustic signals from the practical bill conveyance device in order to show the effectiveness of the proposed method by the bill identification experimentation.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.131 No.8 (2011)
本誌掲載ページ: 1495-1501 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/131/8/131_8_1495/_article/-char/ja/
受取状況を読み込めませんでした
