商品情報にスキップ
1 1

ストリームデータのオンライン特徴抽出アルゴリズム―追加型主成分分析―

ストリームデータのオンライン特徴抽出アルゴリズム―追加型主成分分析―

通常価格 ¥770 JPY
通常価格 セール価格 ¥770 JPY
セール 売り切れ
税込

カテゴリ: 論文誌(論文単位)

グループ名: 【C】電子・情報・システム部門

発行日: 2012/01/01

タイトル(英語): Online Feature Extraction Algorithms for Data Streams―Incremental Principal Component Analysis―

著者名: 小澤 誠一(神戸大学大学院工学研究科)

著者名(英語): Seiichi Ozawa (Graduate School of Engineering, Kobe University)

キーワード: パターン認識,特徴抽出,追加学習,ストリームデータ  pattern recognition,feature extraction,incremental learning,streaming data

要約(英語): Along with the development of the network technology and high-performance small devices such as surveillance cameras and smart phones, various kinds of multimodal information (texts, images, sound, etc.) are captured real-time and shared among systems through networks. Such information is given to a system as a stream of data. In a person identification system based on face recognition, for example, image frames of a face are captured by a video camera and given to the system for an identification purpose. Those face images are considered as a stream of data. Therefore, in order to identify a person more accurately under realistic environments, a high-performance feature extraction method for streaming data, which can be autonomously adapted to the change of data distributions, is solicited. In this review paper, we discuss a recent trend on online feature extraction for streaming data. There have been proposed a variety of feature extraction methods for streaming data recently. Due to the space limitation, we here focus on the incremental principal component analysis.

本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.132 No.1 (2012) 特集:確率的最適化と機械学習の統計的設計と応用

本誌掲載ページ: 2023/06/13 p

原稿種別: 解説/日本語

電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/132/1/132_1_6/_article/-char/ja/

販売タイプ
書籍サイズ
ページ数
詳細を表示する