商品情報にスキップ
1 1

Geolocation based Landmark Detection and Annotation―Towards Clickable Real World―

Geolocation based Landmark Detection and Annotation―Towards Clickable Real World―

通常価格 ¥770 JPY
通常価格 セール価格 ¥770 JPY
セール 売り切れ
税込

カテゴリ: 論文誌(論文単位)

グループ名: 【C】電子・情報・システム部門

発行日: 2013/01/01

タイトル(英語): Geolocation based Landmark Detection and Annotation―Towards Clickable Real World―

著者名: Atsushi Shimada (Faculty of Information Science and Electrical Engineering, Kyushu University), Vincent Charvillat (IRIT-ENSEEIHT), Hajime Nagahara (Faculty of Information Science and Electrical Engineering, Kyushu University), Rin-ichiro Taniguchi (Facul

著者名(英語): Atsushi Shimada (Faculty of Information Science and Electrical Engineering, Kyushu University), Vincent Charvillat (IRIT-ENSEEIHT), Hajime Nagahara (Faculty of Information Science and Electrical Engineering, Kyushu University), Rin-ichiro Taniguchi (Faculty of Information Science and Electrical Engineering, Kyushu University)

キーワード: Landmark detection,Landmark annotation,geolocation,Clickable Real World

要約(英語): Clickable Real World is a new framework to realize an intuitive information search with a mobile terminal. To achieve the goal, we tackle two challenging tasks. One is landmark detection from an observing scene. Our approach detects a landmark based on an image prior. The prior is not given manually. Instead, it is generated automatically from the training samples collected from photo sharing website. Another challenging task is image annotation assisted by geolocation. We use the location of a user who uses a mobile terminal, and geolocation where the training sample images were taken. Two probabilistic models are generated to achieve image annotation. One is image-based labeling which utilizes the co-occurrence between image features and label features. The other is label-based localization which uses the consensus about the label given around the geolocation among photographers. We combine two probabilistic approaches to improve the accuracy of image annotation. We demonstrate this approach for 87 scenes in the world.

本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.133 No.1 (2013) 特集:2012 Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV2012)

本誌掲載ページ: 142-149 p

原稿種別: 論文/英語

電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/133/1/133_142/_article/-char/ja/

販売タイプ
書籍サイズ
ページ数
詳細を表示する