問題構造の概形の推定機構を有する多点探索型組合せ最適化手法
問題構造の概形の推定機構を有する多点探索型組合せ最適化手法
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2016/07/01
タイトル(英語): Multi-point Combinatorial Optimization Method with Estimation Mechanism for Landscape of Combinatorial Optimization Problems
著者名: 森田 真英(首都大学東京),落合 広樹(首都大学東京),田村 健一(首都大学東京),安田 恵一郎(首都大学東京)
著者名(英語): Masahide Morita (Tokyo Metropolitan University), Hiroki Ochiai (Tokyo Metropolitan University), Kenichi Tamura (Tokyo Metropolitan University), Keiichiro Yasuda (Tokyo Metropolitan University)
キーワード: 組合せ最適化,メタヒューリスティクス,近接最適性原理,大谷構造,多点探索 Combinatorial Optimization,Meta-heuristics,Proximate Optimality Principle,Big Valley Structure,Multi-point Search
要約(英語): Based on the Proximate Optimality Principle (POP) and a big valley structure in combinatorial optimization problems, an estimation mechanism for quantitatively estimating structural characteristics (landscape) of combinatorial optimization problems is developed in this paper. Using the results of a numerical evaluation of landscape for several types of combinatorial optimization problems including a traveling salesman problem, a 0-1 knapsack problem, a flow-shop scheduling problem and a quadratic assignment problem, a new multi-point combinatorial optimization method having the landscape estimation mechanism is also proposed. The proposed combinatorial optimization method uses the estimated landscape information of a given combinatorial optimization problem to control diversification and intensification during a search. The search capabilities of the proposed combinatorial optimization method are examined based on the results of numerical experiments using typical benchmark problems.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.136 No.7 (2016) 特集:平成27年電子・情報・システム部門大会
本誌掲載ページ: 963-976 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/136/7/136_963/_article/-char/ja/
受取状況を読み込めませんでした
