商品情報にスキップ
1 1

ブロック構造ニューラルネットワークにおける基本ブロック実装の改良

ブロック構造ニューラルネットワークにおける基本ブロック実装の改良

通常価格 ¥770 JPY
通常価格 セール価格 ¥770 JPY
セール 売り切れ
税込

カテゴリ: 論文誌(論文単位)

グループ名: 【C】電子・情報・システム部門

発行日: 2017/09/01

タイトル(英語): An Efficient Block-Based Neural Network Model Modifying Calculation Procedures of Outputs

著者名: 吉田 樹弥(千葉大学),小圷 成一(千葉大学),岡本 卓(千葉大学)

著者名(英語): Mikiya Yoshida (Chiba University), Seiichi Koakutsu (Chiba University), Takashi Okamoto (Chiba University)

キーワード: 進化型ハードウェア,ブロック構造ニューラルネットワーク,遺伝的アルゴリズム  Evolvable Hardware,Block-based Neural Network,Genetic Algorithm

要約(英語): In recent years a study of evolvable hardware (EHW) which can adapt to new and unknown environments attracts much attention among hardware designers. EHW is reconfigurable hardware and can be implemented combining reconfigurable devices such as FPGA (Field Programmable Gate Array) and evolutionary computation such as Genetic Algorithms (GAs). As such research of EHW, Block-Based Neural Networks (BBNNs) have been proposed. BBNNs have simplified network structures such as two-dimensional array of basic blocks, and their weights and network structure can be optimized at the same time using GAs. SBbN (Smart Block-based Neuron) has been also proposed as a hardware implementation model of basic blocks which have four different internal configurations. SBbN preserves a sufficient number of weights so as to implement all four types of basic blocks. However, SBbN constantly needs to preserve weights unnecessary for some types of basic blocks, and thus consumes redundant hardware resources. In this paper, we propose a new model of BBNNs in which all weights in SBbN are used efficiently with modifying calculation procedures of outputs of basic blocks in order to eliminate the resource redundancy of SBbN. In the proposed model, the required number of basic blocks in BBNNs can be reduced because of using efficiently all weights in SBbN. In order to evaluate the proposed model, we apply it to XOR and Fisher's iris classification. Results of computational experiments indicate the validity of the proposed model.

本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.137 No.9 (2017) 特集:知能メカトロニクス分野と連携する知覚情報技術

本誌掲載ページ: 1279-1285 p

原稿種別: 論文/日本語

電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/137/9/137_1279/_article/-char/ja/

販売タイプ
書籍サイズ
ページ数
詳細を表示する