ボルツマン選択を用いたDeep Q Network
ボルツマン選択を用いたDeep Q Network
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2017/12/01
タイトル(英語): A Deep Q Network with Boltzmann Selection
著者名: 北 悠人(千葉工業大学大学院情報科学研究科情報科学専攻),山口 智(千葉工業大学情報科学部情報工学科)
著者名(英語): Yuto Kita (Graduate School of Information and Computer Science, Chiba Institute of Technology), Satoshi Yamaguchi (Dept. of Computer Science, Chiba Institute of Technology)
キーワード: 強化学習,深層学習,Deep Q Network,ボルツマン選択,ε-グリーディ法 Rinforcement Learning,Deep learning,Deep Q network,Boltzmann Selection,ε-greedy Selection
要約(英語): The reinforcement learning is a method of training for an agent for accomplishing task by selecting suitable action from the current state. Deep Q network is combining convolutional network with Q-learning. By using the Convolutional Neural Network, Deep Q Network can apply to large dimentional input state tasks without special pre-processing. However Deep Q Network needs a large iteration for getting excellent outputs. The reason of that the Deep Q Network is using ε-greedy for action selection, and the ε is set to high value (close to one) in initial stage in learning. High ε value means that the agent selects action randomly in the learning. Hence, the agent needs large number of iteration of learning for accomplishing a task. In this paper adopts the Boltzmann selection to Deep Q Network. Finally, our algorithm has been applied to 2 kinds of arcade learning environment tasks, and results showed that our algorithm is better than ordinary Deep Q Network.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.137 No.12 (2017) 特集Ⅰ:電気・電子・情報関係学会東海支部連合大会 特集Ⅱ:国際会議ICESS2016
本誌掲載ページ: 1676-1683 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/137/12/137_1676/_article/-char/ja/
受取状況を読み込めませんでした
