汎化能力を有する強化学習による最適経路問題の解法
汎化能力を有する強化学習による最適経路問題の解法
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2019/12/01
タイトル(英語): Solution of an Optimal Routing Problem by Reinforcement Learning with Generalization Ability
著者名: 飯間 等(京都工芸繊維大学),大西 鴻哉(京都工芸繊維大学)
著者名(英語): Hitoshi Iima (Kyoto Institute of Technology), Hiroya Oonishi (Kyoto Institute of Technology)
キーワード: 強化学習,機械学習,汎化能力,最適経路問題 reinforcement learning,machine learning,generalization ability,optimal routing problem
要約(英語): In applying reinforcement learning to a different environment, relearning is generally required. The relearning, however, is time-consuming, and therefore a method without the relearning should be developed. This paper proposes a reinforcement learning method with generalization ability for solving an optimal routing problem with a given set of multiple goal positions. The proposed method can rapidly find the optimal route for any set of the multiple goal positions once a reinforcement learning agent learns. In the proposed method, a graph search algorithm determines the visiting order of the goal positions, and an ordinary learning algorithm such as Q-learning determines each route between goal positions. The performance of the proposed method is evaluated through numerical experiments.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.139 No.12 (2019) 特集:電気・電子・情報関係学会東海支部連合大会
本誌掲載ページ: 1494-1500 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/139/12/139_1494/_article/-char/ja/
受取状況を読み込めませんでした
