機械学習を用いた即時型システムGI/G/s/sの性能評価
機械学習を用いた即時型システムGI/G/s/sの性能評価
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2020/03/01
タイトル(英語): A Performance Evaluation of Loss Traffic Systems GI/G/s/s by Using Machine Learning
著者名: 二井 克(愛知県立大学 大学院 情報科学研究科),奥田 隆史(愛知県立大学 情報科学部 情報科学科)
著者名(英語): Suguru Nii (Graduate School of Information Science and Technology, Aichi Prefectural University), Takashi Okuda (Department of Information Science and Technology, Faculty of Information Science and Technology, Aichi Prefectural University)
キーワード: IoT (Internet of Things),即時型システム,機械学習 IoT (Internet of Things),Loss Traffic Systems,Machine Learning
要約(英語): Internet of Things (IoT) data processing systems must handle massive and many kinds of data. Hence, it is important for designing IoT data processing systems to evaluate a performance of GI/G/s/s typed systems. The exact solutions of GI/G/s/s typed systems have not been yet developed. Alternatively, we apply a discrete simulation method to evaluate the systems. However, the method spends much time to evaluate the performance with any conditions. In our previous study, we have evaluated a performance of GI/G/s typed systems with infinite capacity by using machine learning. However, we have not evaluated a performance of loss traffic systems (GI/G/s/s typed systems with finite capacity). In this paper, we evaluate a performance of the systems by using machine learning and validate what kind of training data should we use.
本誌掲載ページ: 354-363 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/140/3/140_354/_article/-char/ja/
受取状況を読み込めませんでした
