商品情報にスキップ
1 1

遺伝的アルゴリズムを用いた地方部における小規模な相乗りのマッチングアルゴリズム

遺伝的アルゴリズムを用いた地方部における小規模な相乗りのマッチングアルゴリズム

通常価格 ¥770 JPY
通常価格 セール価格 ¥770 JPY
セール 売り切れ
税込

カテゴリ: 論文誌(論文単位)

グループ名: 【C】電子・情報・システム部門

発行日: 2022/02/01

タイトル(英語): Matching Algorithm for Compact Ride-sharing in Rural Area using Genetic Algorithm

著者名: 高野 詩菜(富山大学大学院理工学教育部),千田 真也(富山大学大学院理工学教育部),堀田 裕弘(富山大学学術研究部都市デザイン学系)

著者名(英語): Shina Takano (Graduate School of Science and Engineering, University of Toyama), Shinya Chida (Graduate School of Science and Engineering, University of Toyama), Yuukou Horita (School of Sustainable Design, University of Toyama)

キーワード: 相乗り,遺伝的アルゴリズム,組み合わせ最適化,走行実験  ride-sharing,genetic algorithm,combinatorial optimization,driving test

要約(英語): To solve the last mile problem in rural areas, we deal with compact ride-sharing model. For reducing the computational cost, we use a simple GA method and compared the performance of the parameters. To simplify the problem, our algorithm use a simple linear distance and minimize the total traveling distance. A data set used for GA was based on the Inami area in Nanto City, Toyama Prefecture, that is a real case study region. The performance comparison experiment of the algorithm by changing parameters was carried out. Experimental results show that the algorithm is likely to give correct answers for up to four vehicles. It was also shown that the combination of population size and elite proportion for GA could reduce computational costs while ensuring accuracy. In addition, by ride-sharing was actually carried out using the obtained experimental result, it was shown that it could be applied to the actual route even if the calculation was carried out in the linear distance.

本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.142 No.2 (2022) 特集:確率的最適化手法・機械学習技術を用いたシステム知能化の最新動向

本誌掲載ページ: 136-144 p

原稿種別: 論文/日本語

電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/142/2/142_136/_article/-char/ja/

販売タイプ
書籍サイズ
ページ数
詳細を表示する