商品情報にスキップ
1 1

Attention Mechanismを導入したMulti-scale 3D-CNNsによる脳MRI画像の低悪性度グリオーマの1p/19q共欠損分類

Attention Mechanismを導入したMulti-scale 3D-CNNsによる脳MRI画像の低悪性度グリオーマの1p/19q共欠損分類

通常価格 ¥770 JPY
通常価格 セール価格 ¥770 JPY
セール 売り切れ
税込

カテゴリ: 論文誌(論文単位)

グループ名: 【C】電子・情報・システム部門

発行日: 2022/05/01

タイトル(英語): Computerized Classification Method for 1p/19q Codeletion in Low-Grade Glioma on Brain MRI Using Multi-Scale 3D-CNNs with Attention Mechanism

著者名: 田中 大貴(立命館大学大学院理工学研究科),檜作 彰良(立命館大学大学院理工学研究科),中山 良平(立命館大学大学院理工学研究科)

著者名(英語): Daiki Tanaka (Graduate School of Science and Engineering, Ritsumeikan University), Akiyoshi Hizukuri (Graduate School of Science and Engineering, Ritsumeikan University), Ryohei Nakayama (Graduate School of Science and Engineering, Ritsumeikan University)

キーワード: Attention Mechanism,Attention Pooling,脳MRI,低悪性度グリオーマ,1p/19q共欠損_x000D_  attention mechanism,attention pooling,brain MRI,low-grade glioma,1p/19q codeletion

要約(英語): The purpose of this study was to develop a computerized classification method for low-grade gliomas (LGGs) with/without 1p/19q codeletion on brain MRI using multi-scale 3D-convolutional neural networks (Multi-scale 3D-CNNs) with an attention mechanism that analyzes only the tumor region. Our database consisted of brain T2-weighted MRI images for 159 patients (102 LGGs with 1p/19q codeletion and 57 LGGs without it) from The Cancer Imaging Archive. The proposed method was constructed from a feature extractor, an attention mechanism, and a perception branch. In the feature extractor, the feature maps were extracted from input images. The attention mechanism generated the attention maps focusing on a tumor region from those feature maps. The feature maps on the tumor region were then obtained using an attention pooling with the attention maps. In the perception branch, the likelihood of LGG with 1p/19q codeletion was evaluated based on the feature maps of the tumor region. The classification accuracy, the sensitivity, the specificity, and the area under the receiver operating characteristic curve for the proposed method were 78.0%, 82.4%, 70.2%, and 0.838, showing a significant improvement when compared with the multi-scale 3D-CNNs without the attention mechanism (69.8%, 75.5%, 59.6%, and 0.717; p = 0.001).

本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.142 No.5 (2022) 特集:医用・生体工学関連技術

本誌掲載ページ: 550-556 p

原稿種別: 論文/日本語

電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/142/5/142_550/_article/-char/ja/

販売タイプ
書籍サイズ
ページ数
詳細を表示する