有制約最適化のための制約条件の目的関数化と適応的重み調整を用いたMOEA/D
有制約最適化のための制約条件の目的関数化と適応的重み調整を用いたMOEA/D
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2023/03/01
タイトル(英語): MOEA/D with Constraint Objectivization and Adaptive Weight Adjustment for Constrained Optimization
著者名: 安田 雄佑(東京都立大学),熊谷 渉(横河電機(株)),田村 健一(東京都立大学),安田 恵一郎(東京都立大学)
著者名(英語): Yusuke Yasuda (Tokyo Metropolitan University), Wataru Kumagai (Yokogawa Electric Corporation, Ltd), Kenichi Tamura (Tokyo Metropolitan University), Keiichiro Yasuda (Tokyo Metropolitan University)
キーワード: 有制約最適化,メタヒューリスティクス,制約対処法,MOEA/D,パラメータ調整_x000D_ constrained optimization,metaheuristics,constraint handling technique,MOEA/D,parameter adjustment
要約(英語): In this paper, MOEA/D is extended to constrained optimization by making the constraints an objective function. An adaptive adjustment method is proposed to introduce a parameter for varying weights. The parameter for varying the weights is given in such a way that the bias of the search towards the feasible and infeasible regions can be adjusted. The parameter is tuned based on two guidelines to properly utilize infeasible solutions. The first is actively utilizing infeasible solutions with large constraint violations and encouraging global search including the infeasible regions. The second is actively utilizing infeasible solutions with small constraint violations and encouraging a search on the boundary of the feasible regions. This is expected to improve the global optimization performance to the feasible regions, which is a non-convex set, and the convergence performance to feasible solutions. We verify the usefulness of the proposed method for problems where the feasible regions are a convex set and a nonconvex set.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.143 No.3 (2023) 特集:スマートシステムと計測・制御技術 -SDGsへの貢献-
本誌掲載ページ: 353-363 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/143/3/143_353/_article/-char/ja/
受取状況を読み込めませんでした
