商品情報にスキップ
1 1

市街地交差点の衝突回避における非凸パレートフロント推定法

市街地交差点の衝突回避における非凸パレートフロント推定法

通常価格 ¥770 JPY
通常価格 セール価格 ¥770 JPY
セール 売り切れ
税込

カテゴリ: 論文誌(論文単位)

グループ名: 【C】電子・情報・システム部門

発行日: 2024/02/01

タイトル(英語): Estimation of Non-Convex Pareto Front in Collision Avoidance at Urban Intersections

著者名: 田村 秋考(千葉大学大学院融合理工学府地球環境科学専攻都市環境システムコース),荒井 幸代(千葉大学大学院融合理工学府地球環境科学専攻都市環境システムコース)

著者名(英語): Akinori Tamura (Department of Global and Environmental Studies, Graduate School of Science and Engineering, Chiba University, Urban Environment Systems Course), Sachiyo Arai (Department of Global and Environmental Studies, Graduate School of Science and Engineering, Chiba University, Urban Environment Systems Course)

キーワード: 多目的強化学習,衝突回避,非凸パレートフロント multi-objective reinforcement learning,collision avoidance,non-convex pareto front

要約(英語): Inexperienced drivers, such as the elderly and novice drivers, are prone to cause traffic accidents due to human error. Autonomous driving is expected to reduce traffic accidents by assisting their recognition, judgment, and operation. However, it is only effective in situations where drivers can easily make decisions, such as driving on highways, and is still challenging in urban areas. In this paper, we focus on safe and efficient autonomous driving in situations where multiple moving obstacles simultaneously exist, assuming an urban intersection. Since it is difficult to construct a driving model for such a situation, we introduced a reinforcement learning method that does not require a driving model. This paper proposes a collision-avoidance problem as a multi-objective sequential decision-making problem. We propose a method for learning a non-convex Pareto front concerning safety and speed using the multi-objective reinforcement learning algorithm, Pareto-DQN. The proposed method's performance through computer experiments is verified in a T-intersection environment. We confirmed the acquisition of multiple Pareto-optimal driving policies that could not be achieved using conventional methods with linear scalarization. The proposed method is helpful for system designers because it provides a more detailed representation of the driver's non-convex preferences.

本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.144 No.2 (2024) 特集:ディジタル信号処理の基礎と応用

本誌掲載ページ: 88-96 p

原稿種別: 論文/日本語

電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/144/2/144_88/_article/-char/ja/

販売タイプ
書籍サイズ
ページ数
詳細を表示する