深層学習を用いた孔壁展開画像における亀裂検出
深層学習を用いた孔壁展開画像における亀裂検出
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2024/07/01
タイトル(英語): Crack Detection in Borehole-wall Panoramic Images using Deep Learning
著者名: 和田 直史(北海道科学大学),鈴木 利実((株)レアックス),立野 直樹((株)レアックス)
著者名(英語): Naofumi Wada (Hokkaido University of Science), Toshimi Suzuki (RaaX Co., Ltd.), Naoki Tatsuno (RaaX Co., Ltd.)
キーワード: ボアホールカメラ,孔壁展開画像,亀裂検出,深層学習 borehole camera,borehole-wall panoramic image,crack detection,deep learning
要約(英語): In geological surveys, a borehole camera is used to photograph the vertical cylindrical borehole-wall to investigate underground cracks. Currently, the identification of cracks from borehole-wall images is performed visually by skilled workers, which requires a great deal of time and effort. In this study, we use deep learning to detect sine-curve-like cracks from borehole-wall panoramic images. We designed a two-class classification model that discriminates the presence or absence of cracks using existing network architectures. Furthermore, we introduced a new data augmentation technique called “CyclicShift”, which takes advantage of the unique properties of borehole-wall panoramic images. Through experiments using our own dataset, we showed that both WideResNet and ViT achieve over 98% accuracy under the limited condition of a single crack in one image. Additionally, we confirmed the effectiveness of data augmentation and fine-tuning of pre-trained models. We also demonstrated the potential of using Grad-CAM to locate the positions of cracks.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.144 No.7 (2024) 特集:2023年電子・情報・システム部門大会
本誌掲載ページ: 658-664 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/144/7/144_658/_article/-char/ja/
受取状況を読み込めませんでした
