CNNを用いたマイクロイベント告知画像のクリック数予測手法の提案
CNNを用いたマイクロイベント告知画像のクリック数予測手法の提案
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2024/09/01
タイトル(英語): Proposal of a CNN-based Method for Predicting the Number of Clicks on Micro-event Flyer Images
著者名: 井上 大地((株) D2C),松本 慎平(広島工業大学)
著者名(英語): Daichi Inoue (D2C Inc.), Shimpei Matsumoto (Hiroshima Institute of Technology)
キーワード: ソーシャルメディア,告知画像,CNN,クリック数 social media,flyer image,CNN,number of clicks
要約(英語): The web service “Tame-Map” enables users to easily transmit, view, and share information about small local activities, known as micro-events, which typically receive less attention on mainstream social media platforms. This study aims to develop a method for predicting the click rates of micro-event announcement images on “Tame-Map” and to evaluate the effectiveness of this approach. The research primarily utilizes machine learning techniques and constructs a predictive model employing Convolutional Neural Networks (CNN). The model assumes that thumbnail images of micro-events possess distinct features that attract viewers and utilizes these images as primary input data. Moreover, the study introduces an advanced model that incorporates meta-information, such as the event's location, as additional explanatory variables. The resulting model demonstrates adequate predictive accuracy, suggesting its potential as a standard method in future applications.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.144 No.9 (2024) 特集:知能メカトロニクス分野と連携する知覚情報技術
本誌掲載ページ: 942-954 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/144/9/144_942/_article/-char/ja/
受取状況を読み込めませんでした
