商品情報にスキップ
1 1

シリーズカルマンフィルタ法を用いた二次電池の充電率推定

シリーズカルマンフィルタ法を用いた二次電池の充電率推定

通常価格 ¥770 JPY
通常価格 セール価格 ¥770 JPY
セール 売り切れ
税込

カテゴリ: 論文誌(論文単位)

グループ名: 【D】産業応用部門

発行日: 2012/09/01

タイトル(英語): SOC Estimation of HEV/EV Battery using Series Kalman Filter

著者名: 馬場 厚志(慶應義塾大学 理工学部 物理情報工学科/カルソニックカンセイ(株)パワエレ設計グループ),足立 修一(慶應義塾大学 理工学部 物理情報工学科)

著者名(英語): Atsushi Baba (Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University/Power Electronics Components Design Group, Calsonic Kansei Corporation), Shuichi Adachi (Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University)

キーワード: 二次電池,ハイブリッド自動車,電気自動車,パラメータ推定,カルマンフィルタ,充電率  rechargeable battery,hybrid electric vehicle (HEV),electric vehicle (EV),parameter estimation,Kalman filter,state of charge (SOC)

要約(英語): This paper proposes a method of accurately estimating the state of charge (SOC) of rechargeable batteries in high fuel efficiency vehicles, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs). Despite the importance of accurately estimating the SOC of batteries to achieve maximum efficiency and safety, no method thus far has been able to do so. This paper focuses on the simplification of a battery model, estimation of time-varying battery parameters, and estimation of SOC under measurement noises. To address these three issues, a model-based approach that uses a cascaded combination of two Kalman filters, “Series Kalman Filters, ” is proposed and implemented. This approach is verified by performing a series of simulations under an HEV operating environment. The ultimate goal is to design a state estimator capable of accurately estimating the state of any kinds of batteries under every possible user condition.

本誌: 電気学会論文誌D(産業応用部門誌) Vol.132 No.9 (2012)

本誌掲載ページ: 907-914 p

原稿種別: 論文/日本語

電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejias/132/9/132_907/_article/-char/ja/

販売タイプ
書籍サイズ
ページ数
詳細を表示する