Performance Improvement of Magnet Temperature Estimation Using Kernel Method Based Non-Linear Parameter Estimator for Variable Leakage Flux IPMSMs
Performance Improvement of Magnet Temperature Estimation Using Kernel Method Based Non-Linear Parameter Estimator for Variable Leakage Flux IPMSMs
カテゴリ: 論文誌(論文単位)
グループ名: 【D】産業応用部門(英文)
発行日: 2021/11/01
タイトル(英語): Performance Improvement of Magnet Temperature Estimation Using Kernel Method Based Non-Linear Parameter Estimator for Variable Leakage Flux IPMSMs
著者名: Atsushi Okada (EV System Laboratory, Nissan Motor Co., Ltd.), Ami S. Koshikawa (Graduate School of Information Sciences, Tohoku University), Kouki Yonaga (Graduate School of Information Sciences, Tohoku University), Kensuke Sasaki (EV System Laboratory, N
著者名(英語): Atsushi Okada (EV System Laboratory, Nissan Motor Co., Ltd.), Ami S. Koshikawa (Graduate School of Information Sciences, Tohoku University), Kouki Yonaga (Graduate School of Information Sciences, Tohoku University), Kensuke Sasaki (EV System Laboratory, Nissan Motor Co., Ltd.), Takashi Kato (EV System Laboratory, Nissan Motor Co., Ltd.), Masayuki Ohzeki (Graduate School of Information Sciences, Tohoku University)
キーワード: machine learning,temperature estimation,IPMSM,Variable Leakage Flux IPM (VLF-IPM)
要約(英語): This study proposes a novel approach that employs the kernel method as a regression model to demonstrate the dependency of magnet flux linkage on the applied current, which is suitable for magnet temperature estimation. This model can estimate the flux linkage with a mean relative error of less than 2% in comparison with that obtained using finite element analysis. The magnet temperature is estimated by comparing the magnet flux linkage under loading conditions with the values obtained from the regression models built under fixed temperatures. The accuracy of the results obtained using the magnet temperature estimation method is approximately the same as that of the results obtained using the look-up table, suggesting that the proposed approach is suitable for non-linear motor property modeling.
本誌: IEEJ Journal of Industry Applications Vol.10 No.6 (2021) Special Issue on “ICEMS 2020-Hamamatsu”
本誌掲載ページ: 618-623 p
原稿種別: 論文/英語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejjia/10/6/10_20012890/_article/-char/ja/
受取状況を読み込めませんでした
