6DoF-SLAM using 3D Point Cloud-based Objects Recognition
6DoF-SLAM using 3D Point Cloud-based Objects Recognition
カテゴリ: 論文誌(論文単位)
グループ名: 【D】産業応用部門(英文)
発行日: 2022/11/01
タイトル(英語): 6DoF-SLAM using 3D Point Cloud-based Objects Recognition
著者名: Jiayi Wang (Yokohama National University), Yasutaka Fujimoto (Yokohama National University), Yoshihiro Iwanaga (KOMATSU), Shunsuke Miyamoto (KOMATSU)
著者名(英語): Jiayi Wang (Yokohama National University), Yasutaka Fujimoto (Yokohama National University), Yoshihiro Iwanaga (KOMATSU), Shunsuke Miyamoto (KOMATSU)
キーワード: robot sensing system,simultaneous localization and mapping,computer vision
要約(英語): A method for three-dimensional (3D) point cloud-based object recognition and a method that uses the recognized objects for six-degree-of-freedom simultaneous localization and mapping (SLAM) with a high accuracy are presented. For object recognition, we use a convolutional neural network to identify the meaning of each point inside an input 3D point cloud. For scan registration, we present a highly accurate hybrid method that combines the iterative closest point with particle swarm optimization (PSO) to match the recognized points to be archived. Using PSO to match the recognized object's points in each neighboring scan can help decrease incorrect correspondences and enhance the robustness of scan matching. Compared to state-of-art methods, the proposed method achieved good performance on the KITTI odometry benchmark and our SLAM experiments.
本誌: IEEJ Journal of Industry Applications Vol.11 No.6 (2022)
本誌掲載ページ: 752-762 p
原稿種別: 論文/英語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejjia/11/6/11_21013114/_article/-char/ja/
受取状況を読み込めませんでした
