非線形写像による高次元センサ情報の可視化とクラス構造の解析
非線形写像による高次元センサ情報の可視化とクラス構造の解析
カテゴリ: 論文誌(論文単位)
グループ名: 【E】センサ・マイクロマシン部門
発行日: 2018/04/01
タイトル(英語): Visualization of High-dimensional Sensor Data and Analysis of their Class Structure Using Nonlinear Map
著者名: 佐藤 仁樹(公立はこだて未来大学 システム情報科学部),佐藤 雅子(情報ノ宮蕗の下工房),高尾 佳史(菊正宗酒造(株)総合研究所)
著者名(英語): Hideki Satoh (School of Systems Information Science, Future University Hakodate), Masako Satoh (Johonomiya Fukinoshita Studio), Yoshifumi Takao (General research laboratory, Kiku-masamune sake brewing Co. Ltd.)
キーワード: 遺伝的アルゴリズム,Nelder-Mead法,基底関数,非線形,写像,可視化 genetic algorithm,Nelder-Mead method,basis,nonlinear,map,visualization
要約(英語): An algorithm that constructs a nonlinear map from a high-dimensional feature space into a low-dimensional space was developed to enable analysis of the structure of data with high-dimensional characteristic features and their class information obtained using various sensors and analyzers. First, a nonlinear map is defined by summing nonlinear basis functions, and their optimal combination is derived using a genetic algorithm to avoid the “curse of dimensionality.” Next, the coefficients of the basis functions are derived using the Nelder-Mead method to flexibly cope with the various demands for the map that cannot always be expressed using statistics of the characteristic features. As a result, nine-dimensional sake data can be mapped into a two-dimensional space so as not only to discriminate the classes but also to preserve the order of distances between classes as much as possible.
本誌: 電気学会論文誌E(センサ・マイクロマシン部門誌) Vol.138 No.4 (2018)
本誌掲載ページ: 123-131 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejsmas/138/4/138_123/_article/-char/ja/
受取状況を読み込めませんでした
