機械学習に基づく離散値入力制御系に対する制御器設計手法
機械学習に基づく離散値入力制御系に対する制御器設計手法
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2012/06/01
タイトル(英語): Machine-learning-based Controller Design for Discrete-valued Input Systems
著者名: 小中 英嗣(名城大学理工学部情報工学科)
著者名(英語): Eiji Konaka (Department of Information Engineering, Faculty of Science and Technology, Meijo University)
キーワード: 離散値入力系,機械学習,近似最近傍手法,サポートベクターマシン discrete-valued input system,machine learning,approximate nearest neighbour method,support vector machine
要約(英語): Switching and ON/OFF controls are effective control techniques for control systems equipped with low-resolution actuators. They can be modeled as control systems that restrict the control input to discrete values. In this paper, a controller design method based on a machine learning technique is discussed. The relation between the current situation (previous input sequence and previous output sequence), applied input, and output evolution is learned on the basis of some machine learning methods. Specifically, different machine learning methods, such as approximate nearest neighbour (ANN) method and support vector machine (SVM) are used in this study. The trained classifier will be a controller that connects current situation and suitable control input that can drive the current output to the desired one. The effectiveness of the proposed method is verified for discrete input systems via some simulations and experiments.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.132 No.6 (2012) 特集:データ指向型モデリング/予測/制御
本誌掲載ページ: 897-906 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/132/6/132_897/_article/-char/ja/
受取状況を読み込めませんでした
