成熟した培養神経回路のネットワーク形状と活動の経時変化
成熟した培養神経回路のネットワーク形状と活動の経時変化
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2014/03/01
タイトル(英語): Chronic Co-variation of Neural Network Configuration and Activity in Mature Dissociated Cultures
著者名: 大川 知(東京大学大学院情報理工学系研究科),三田 毅(東京大学大学院情報理工学系研究科),Douglas Bakkum(チューリッヒ工科大学Biosystems Science and Engineering学科),Urs Frey(理化学研究所生命システム研究センター),Andreas Hierlemann(チューリッヒ工科大学Biosystems Science and Engineering学科),神崎 亮平(東京大学大学院情報理工学系研究科/東京大学先端科学技術研究センター),高橋 宏知(東京大
著者名(英語): Satoru Okawa (Graduate School of Information Science and Technology, The University of Tokyo), Takeshi Mita (Graduate School of Information Science and Technology, The University of Tokyo), Douglas Bakkum (Department of Biosystems Science and Engineering, ETH Zurich), Urs Frey (RIKEN Quantitative Biology Center), Andreas Hierlemann (Department of Biosystems Science and Engineering, ETH Zurich), Ryohei Kanzaki (Graduate School of Information Science and Technology, The University of Tokyo/Research Center for Advanced Science and Technology, The University of Tokyo), Hirokazu Takahashi (Graduate School of Information Science and Technology, The University of Tokyo/Research Center for Advanced Science and Technology, The University of Tokyo)
キーワード: 分散培養神経細胞,多点微小電極アレイ,細胞移動,神経活動,CMOS Dissociated cultured neuron,microelectrode array,cell migration,neural activity,CMOS
要約(英語): Spatio-temporal neural patterns depend on the physical structure of neural circuits. Neural plasticity can thus be associated with changes in the circuit structure. For example, newborn neurons migrate towards existing, already matured neural networks in order to participate in neural computation. In the present study, we have conducted two experiments to investigate how neural migration is associated with the development of neural activity in primary dissociated cultures of neuronal cells. In Experiment 1, using a mature culture, a high-density CMOS micro-electrode array was used to continuously monitor neural migration and activity for more than two weeks. Consequently, we found that even in mature neuronal cultures neurons moved 2.0±1.0 µm a day and that the moving distance was negatively correlated with their firing rate, suggesting that neurons featuring low firing rates tend to migrate actively. In Experiment 2 using a co-culture of mature and immature neurons, we found that immature neurons moved more actively than matured neurons to achieve functional connections to other neurons. These findings suggest that neurons with low firing rates as well as newborn neurons actively migrate in order to establish their connections and function in a neuronal network.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.134 No.3 (2014) 特集:情報環境と人間の調和に向けた工学技術
本誌掲載ページ: 338-344 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/134/3/134_338/_article/-char/ja/
受取状況を読み込めませんでした
