Data Generation from Robotic Performer for Chord Recognition
Data Generation from Robotic Performer for Chord Recognition
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2021/02/01
タイトル(英語): Data Generation from Robotic Performer for Chord Recognition
著者名: Gerelmaa Byambatsogt (Faculty of Computer Science and Electrical Engineering, Kumamoto University), Lodoiravsal Choimaa (National University of Mongolia Ulaanbaatar), Gou Koutaki (Faculty of Computer Science and Electrical Engineering, Kumamoto University
著者名(英語): Gerelmaa Byambatsogt (Faculty of Computer Science and Electrical Engineering, Kumamoto University), Lodoiravsal Choimaa (National University of Mongolia Ulaanbaatar), Gou Koutaki (Faculty of Computer Science and Electrical Engineering, Kumamoto University
キーワード: chord recognition,data synthesis,convolutional neural network (CNN),robot,guitar
要約(英語): This paper presents a synthetic data generation method using a robot to create a substantial dataset. One important task in the field of learning-based recognition is to collect large amounts of high-quality training data. To increase the training dataset, many researches have used data augmentation methods. In musical recognition, data augmentation is implemented using digital signal processing methods including pitch-shifting and time-stretching. Data augmentation is a limited method because it depends on prior knowledge of the data and it cannot be performed all domains. We propose a new dataset collection method using a robot that automatically plays musical instruments, which enables high-quality data to be added to the training samples. We compare the results with two kinds of human dataset and a mixed dataset, which include human and robot datasets, using four kinds of convolutional neural networks (CNNs). The results indicate that the proposed method using CNNs analyzing the mixed dataset with a guitar-playing robot, can outperform CNNs using the human dataset.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.141 No.2 (2021) 特集I:IoT社会の進歩を促進するワイヤレス技術 特集Ⅱ:ディジタル信号処理のためのシステム技術
本誌掲載ページ: 205-213 p
原稿種別: 論文/英語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/141/2/141_205/_article/-char/ja/
受取状況を読み込めませんでした
