商品情報にスキップ
1 1

視認する単純な画像の形と色を反映する脳波信号特徴量とその判別の研究

視認する単純な画像の形と色を反映する脳波信号特徴量とその判別の研究

通常価格 ¥770 JPY
通常価格 セール価格 ¥770 JPY
セール 売り切れ
税込

カテゴリ: 論文誌(論文単位)

グループ名: 【C】電子・情報・システム部門

発行日: 2023/04/01

タイトル(英語): A Study on EEG Signal Features Reflecting Shapes and Colors of Simple Visual Images and their Discrimination

著者名: 加藤 明広(芝浦工業大学大学院 理工学研究科),堀江 亮太(芝浦工業大学大学院 理工学研究科/芝浦工業大学工学部)

著者名(英語): Akihiro Kato (Graduate School of Engineering and Science, Shibaura Institute of Technology), Ryota Horie (Graduate School of Engineering and Science, Shibaura Institute of Technology/College of Engineering, Shibaura Institute of Technology)

キーワード: 脳波信号,事象関連電位,事象関連スペクトラム摂動,試行間位相同期,長短期記憶,畳み込みニューラルネットワーク  electroencephalography,event-related potential,event-related spectral perturbation,inter-trial coherence,long short-term memory,convolutional neural network

要約(英語): In this study, as a basic investigation for EEG-based visual image reconstruction, we investigated whether EEG signal features reflect shapes and colors of simple visual images which subjects viewed and whether the features can be discriminated. First, we investigated how the shapes and the colors are reflected in event-related potentials (ERP), the event-related spectrum perturbations (ERSP), and the inter-trial phase synchronization (ITC). The results showed statistically significant differences in ERP among the colors and ERP, ERSP and ITC among the shapes depending on time periods, frequency bands and electrodes. Second, based on the results, we explored learnable input data sets. Then, learnability for discriminating the shapes were shown in EEG waveforms on 100ms time periods in single trials at all channels and phase of time frequency analysis on the limited time-frequency domain and electrodes. Finally, we investigated whether two discriminators using LSTM and CNN discriminate the shapes from the learnable data for each subject. Then, it was found that accuracies of discrimination of the shapes were over a chance level with all the learnable data sets, subjects, and discriminators. We concluded that the distinct shapes can be discriminated from EEG signals by exploring appropriate features of input signals for discriminators.

本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.143 No.4 (2023) 特集:医療/ヘルスケア×AI-量子・情報・エレクトロニクスの応用として

本誌掲載ページ: 397-405 p

原稿種別: 論文/日本語

電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/143/4/143_397/_article/-char/ja/

販売タイプ
書籍サイズ
ページ数
詳細を表示する