軽度認知障害のスクリーニングに向けた階層型ニューラルネットワークモデルの提案
軽度認知障害のスクリーニングに向けた階層型ニューラルネットワークモデルの提案
カテゴリ: 論文誌(論文単位)
グループ名: 【C】電子・情報・システム部門
発行日: 2023/04/01
タイトル(英語): A Hierarchical Neural Network Model for Japanese Toward Detecting Mild Cognitive Impairment
著者名: 後藤 哲史(帝京平成大学 健康メディカル学部)
著者名(英語): Tetsuji Goto (Faculty of Health and Medical Science, Teikyo Heisei University)
キーワード: 軽度認知障害,スクリーニング,ニューラルネットワーク,LSTM,自然言語処理 mild cognitive impairment,screening,neural netowork,long short term memory,natural language processing
要約(英語): We found that some signs of Mild Cognitive Impairment (MCI) might be presented in a structure of a sentence and a relation between sentences talked by a man, and develop a neural network model which has an analogy with the hierarchical structure of speakers, tpoics, sentences and words in Japanese. We build our model based on 2-layered bi-directional LSTM, corresponding to words-sentences and sentences-topics hierarchy. As a layer corresponding to speakers, we use a linear classifier with self-attention. The test result shows a largely improved AUC, compared with our another test by using the normal 2-layered bi-directional LSTM with TBPTT. The result also indicates that there are some characteristic patterns in a talk by an elderly person with MCI. We classify the character vectors of topics generated from our model through learning into clusters whose number is 1/10 of the number of persons in our data. Since these clusters have almost less than 10% or more than 90% rate of positive share, we conclude that we can develop a screening method based on a talk in Japanese by an elderly person in the near future.
本誌: 電気学会論文誌C(電子・情報・システム部門誌) Vol.143 No.4 (2023) 特集:医療/ヘルスケア×AI-量子・情報・エレクトロニクスの応用として
本誌掲載ページ: 465-470 p
原稿種別: 論文/日本語
電子版へのリンク: https://www.jstage.jst.go.jp/article/ieejeiss/143/4/143_465/_article/-char/ja/
受取状況を読み込めませんでした
